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In some real-world decision processes, decision makers may prefer to provide their opin-
ions using linguistic expressions instead of a single linguistic term. Particularly, they may
hesitate between several linguistic terms. In this paper, we deal with the consensus issue in
the hesitant linguistic group decision making (GDM) problem. Firstly, a novel distance-
based consensus measure is proposed. Then, using this consensus measure we develop
an optimization-based consensus model in the hesitant linguistic GDM, which minimizes
the number of adjusted simple terms in the consensus building. Furthermore, a two-stage
model is displayed to further optimize the solutions to the proposed consensus model,
through which we obtain the unique optimal adjustment suggestion to support the con-
sensus reaching process in the hesitant linguistic GDM. Finally, several desirable properties
are proposed to justify the proposal, and two examples are used to demonstrate the valid-
ity of the models.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

In real-world decision-making activities, decision makers often provide their opinions linguistically. However, solving a
linguistic decision problem is complex, and implies a need of linguistic computational models for computing with words
(CWW) [13,22,30]. There are three different linguistic computational models in decision making: (1) the model based on
type-1 fuzzy sets [7,44] (or interval type-2 fuzzy sets [25,26,39,40]), (2) the symbolic model based on ordinal scales
[8,41–43] and (3) the model based on the 2-tuple representation [10,11,14,37].

However, the linguistic computational models mentioned above are based on single linguistic term sets. In some deci-
sion-making situations, it is more comfortable for decision makers to use linguistic expressions to provide their opinions
instead of using a single linguistic term. In recent years, several studies based on linguistic expressions have been proposed
[1,21,23,34,45]. Particularly, if decision makers are not confident of their opinions, they may hesitate between several dif-
ferent linguistic terms [2,20,31,32,38,48]. Rodríguez et al. [31] introduced the concept of a hesitant fuzzy linguistic term
set (HFLTS) by using comparative terms to provide a linguistic and computational basis to enrich linguistic elicitation based
on hesitant linguistic approach. Rodríguez et al. [32] extended the use of context-free grammars to develop a group decision
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making (GDM) model based on HFLTSs. Wei et al. [38] defined operations on HFLTSs, and gave possibility degree formulas for
comparing HFLTSs and also presented two new linguistic aggregation operators for HFLTSs. Liu and Rodríguez [20] proposed
a new representation of HFLTSs by means of a fuzzy envelope to carry out the CWW processes. Beg and Rashid [2] proposed a
new method to aggregate the opinions of decision makers on different criteria, regarding a set of alternatives, where the
opinions of decision makers are represented by HFLTSs. Zhu and Xu [48] introduced the concept of hesitant fuzzy linguistic
preference relation and defined several consistency measures for hesitant fuzzy linguistic preference relations. Agell et al. [1]
and Roselló et al. [34] introduced a complete description of the order-of-magnitude qualitative space, which is related to the
HFLTS proposed in Rodríguez et al. [31]. Agell et al. [1] and Roselló et al. [34] considered a set of consecutive linguistic labels
based on order-of-magnitude qualitative space to represent the uncertainty.

Generally, at the beginning of GDM problems, decision makers’ opinions may differ substantially. As a result, consensus
processes are proposed to help decision makers reach a consensus. In consensus processes, full and unanimous agreement
for every decision maker is often not necessary, so ‘‘soft’’ consensus has been presented [5,17,18]. Afterward, a number of
studies for modeling the consensus process based on ‘‘soft’’ consensus have been presented (e.g., [6,15,16,24,28,29,34]).
Feedback mechanism is one of the key elements in the consensus process, and the most important issue in feedback mech-
anism is to provide the adjustment suggestions to help decision makers reach a higher consensus level. It is natural that deci-
sion makers often hope to minimize adjustments between the original and adjusted individual opinions. Dong et al. [9]
proposed a consensus operator, which provided an alternative consensus model for GDM problems to minimize the devia-
tion between original and adjusted individual opinions. Ben-Arieh and Easton [3] and Ben-Arieh et al. [4] considered that the
cost of moving each decision maker’s opinion 1 unit distance is different. Based on the concept of consensus cost, they pro-
posed the minimum cost consensus model and the maximum expert consensus model. Subsequently, Zhang et al. [46,47]
extended the minimum cost consensus models and proposed a novel framework to achieve minimum cost consensus under
aggregation operators.

As mentioned above, consensus models with minimum adjustments have been proposed in numeric environments
[3,4,46,47] (or linguistic environments with single linguistic term [9]). But none of these consensus studies relates to the hes-
itant linguistic assessments. Actually in some real-world decision processes, decision makers may hesitate about their opin-
ions. Therefore, we focus on the theories of HFLTSs that allow for handling of imprecise and vague assessments, and hope to
solve the open problem: reaching a consensus with minimum adjustments in the hesitant linguistic GDM context. In order to
do this, we must tackle the following two challenges:

(1) How to measure the consensus level among decision makers in hesitant linguistic GDM problems.
(2) How to design a procedure to provide adjustment suggestions, which helps the decision makers reach a consensus in

the hesitant linguistic GDM context. Particularly, we hope to minimize the adjustments between original and adjusted
hesitant linguistic opinions in the consensus building.

Motivated by these challenges, in this paper we define a distance between two HFLTSs, which reflects the number of dif-
ferent simple terms between two HFLTSs. For example, let S = {s0 = very poor, s1 = poor, s2 = average, s3 = good, s4 = very good}
be a linguistic term set, and let Q = {s1, s2, s3} and N = {s3, s4} be two HFLTSs of S. The distance between Q and N is defined as
the number of different simple terms between Q and N, i.e., the number of simple terms in the set (Q [ N) � (Q \ N) = {s1, s2,
s4}. Based on this idea, a novel consensus measure is proposed for measuring the consensus level in hesitant linguistic GDM
problems. Furthermore, we design an optimization-based two-stage procedure to provide optimal adjustment suggestions to
help the decision makers reach a consensus in the hesitant linguistic GDM context.

The purpose of this paper is to provide tools to help the decision makers manage the consensus reaching process in hes-
itant linguistic GDM problems. The rest of this paper is organized as follows. Section 2 provides background regarding the
HFLTSs developed by Rodríguez et al. [31] and proposes the hesitant linguistic GDM problem. A distance-based approach for
measuring the consensus level in the hesitant linguistic GDM is provided in Section 3. Following this, Section 4 proposes an
optimization-based two-stage model with minimum adjustments to obtain the optimal adjusted individual opinions. Sub-
sequently, several desired properties are investigated in Section 5. Finally, two illustrative examples are provided in Sec-
tion 6, and concluding remarks are included in Section 7.
2. Background and the proposed problem

In this section, we review the concept and related operation laws of HFLTS, and then propose the hesitant linguistic GDM
problem.
2.1. Hesitant fuzzy linguistic term sets

The basic notations and operational laws of linguistic variables were introduced in [14]. Let S = {sjjj = 0, . . . , g} be a linguis-
tic term set with odd granularity g + 1, where the term sj represents a possible value for a linguistic variable. The linguistic
term set is usually required to satisfy the following additional characteristics:
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(1) The set is ordered: si 6 sj if and only if i 6 j;
(2) There is a negation operator: neg(sj) = sg�j.

Torra [36] introduced the hesitant fuzzy set. Similar to the situations that are described and managed by hesitant fuzzy
sets in [36], decision makers may hesitate between several linguistic terms before assessing an alternative. Bearing this idea
in mind, Rodríguez et al. [31] gave concepts regarding HFLTSs as follows:

Definition 2.1 [31]. Let S = {sjjj = 0, . . . , g} be a linguistic term set, where g + 1 is odd. A hesitant fuzzy linguistic term set
(HFLTS), MS, is an ordered finite subset of consecutive linguistic terms of S.

In this paper, if sj 2MS, we define that sj is a simple term in MS. For example, s2 is a simple term in MS = {s2, s3, s4}.
Once the concept of HFLTS has been introduced, some operation laws can be performed on HFLTSs.
Let S = {sjjj = 0, . . . , g} be a linguistic term set, where g + 1 is odd. Let MS; MS

1 and MS
2 be three HFLTSs of S.

Definition 2.2 [31]. The upper bound MS+ and lower bound MS� of the HFLTS MS are defined as:

(1) MS+ = max(si) = sj, where si 2MS;

(2) MS� = min(si) = sj, where si 2MS.
Definition 2.3 [31]. The envelope of the HFLTS MS, denoted as env(MS), is a linguistic interval whose limits are obtained by
means of lower bound MS� and upper bound MS+, i.e.,
envðMSÞ ¼ ½MS�;MSþ�: ð1Þ

Based on the concept of the envelope of the HFLTS, env(MS), the definition of the comparison between two HFLTSs is

defined as Definition 2.4.
Definition 2.4 [31]. The comparison between MS
1 and MS

2 is defined as follows:

(1) MS
1 > MS

2 if env MS
1

� �
> env MS

2

� �
;

(2) MS
1 ¼ MS

2 if env MS
1

� �
¼ env MS

2

� �
.

The latest proposals regarding the HFLTSs include the formulas for comparing HFLTSs [38], the aggregation operators of
HFLTSs [2,38] and the consistency measures for hesitant fuzzy linguistic preference relations [48], etc. Rodríguez et al. [33]
provided an overview in order to present a clear view about the different concepts, tools and trends related to the use of
hesitant fuzzy sets in decision making.

2.2. Proposed problem in the hesitant linguistic GDM

The GDM is defined as a decision situation where two or more decision makers take part and provide their
opinions in order to reach a collective decision. Let D = {diji = 1, . . . , n}(n P 2) denote a set of n decision makers,
and let S = {sjjj = 0, . . . , g} be a linguistic term set. As pointed out in Section 1, in some situations, it is more appro-
priate for decision makers to provide their preferences using HFLTSs instead of single linguistic term sets. So, in this
paper, we consider that the decision makers provide their original preferences by HFLTSs of S, denoted by Ai(i = 1,
. . . , n).

Then, the decision problem is how to obtain a collective opinion with an acceptable consensus level in the hesitant lin-
guistic GDM. In order to deal with this open decision problem, two key challenges were pointed out in Section 1, and they
will be tackled in the following sections.

In order to improve readability, the main notations used in this paper are listed as follows:
S = {sjjj = 0, . . . , g}: Linguistic term set.
D = {diji = 1, . . . , n}: The set of decision makers.
A = (A1, . . . , An): Original individual opinions of n decision makers, where Ai is the original individual opinion of di.
A ¼ ðA1; . . . ;AnÞ: Adjusted individual opinions of n decision makers, where Ai is the adjusted individual opinion of di,

obtained by model P1 (that will be presented in model (11) in Section 4.1).
Ac: Adjusted collective opinion obtained by model P1.
OA ¼ ðOA1; . . . ;OAnÞ: Adjusted individual opinions of n decision makers, where OAi is the adjusted individual opinion of di,

obtained by model P2 (that will be presented in model (26) in Section 4.3).
OAc: Adjusted collective opinion obtained by model P2.
MS: A HFLTS of S.
HS: Set of the HFLTSs of S, HS = {MSjMS is a HFLTS of S}.
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CLi: The consensus level of di.
CL: The established consensus level for all decision makers.

3. Measuring the consensus level in the hesitant linguistic GDM

Consensus measure is used to measure the similar degree of preferences among a group of decision makers, which is the
basis for constructing a consensus model. Usually, using different consensus measures obtains different consensus models in
GDM problems. In this section, we develop a novel distance-based approach for measuring the consensus level in the hes-
itant linguistic GDM.

Let MS be a HFLTS of S, and let #(MS) denote the number of simple linguistic terms in MS. For example, if MS = {s2, s3, s4, s5},
then #(MS) = 4. For two arbitrary HFLTSs, Q and N, here we propose the following equation to measure the difference
between Q and N, as Eq. (2):
dðQ ;NÞ ¼ #ðQ [ NÞ �#ðQ \ NÞ: ð2Þ
The value of d(Q, N) has a definite implication, and measures the number of different simple terms between Q and N. For
example, Q = {s1, s2, s3} and N = {s3, s4}, the number of different simple terms between Q and N is #(Q [ N) � #(Q \ N) = 3.
Then, we use d(Q, N) = 3 to measure the difference between Q and N.

Furthermore, we prove this difference measure between two HFLTSs is a distance metric as Theorem 3.1.

Theorem 3.1. Let Q, N and P be three HFLTSs. Then, the following conditions will be satisfied:

(1) d(Q, N) = 0 if and only if Q = N;
(2) d(Q, N) = d(N, Q);
(3) d(Q, P) + d(P, N) P d(Q, N);
(4) 0 6 d(Q, N) 6 #(Q [ N).

Proof of Theorem 3.1 is provided in Appendix.

Note 1. To our knowledge, Falcó et al. [12] proposed a distance measure for sets of consecutive labels, which is based on
the computing with position indexes (see Definition 4.1). The distance measure proposed in [12] can guarantee the accuracy
when the linguistic term set distributes uniform and symmetrical. The new distance measure for HFLTSs proposed in this
paper has a definite implication, which measures the number of different simple terms between two HFLTSs. The new pro-
posed distance measure for HFLTSs can not only be used in the hesitant linguistic GDM with the uniformly and symmetri-
cally distributed term set, but also in the hesitant linguistic GDM with the linguistic term set that not uniformly and
symmetrically distributed.

Usually, distance based approaches are used to measure the consensus level among decision makers’ opinions. Based on
Eq. (2), an approach for measuring consensus level in the hesitant linguistic GDM can be proposed as Definition 3.1.

Definition 3.1. Let Ai represent the individual opinion of di and let Ac represent the collective opinion. Here, we define the
consensus level of di as Eq. (3):
CLi ¼ 1� dðAi;A
cÞ

#ðAi [ AcÞ
; ð3Þ
i.e.,
CLi ¼
#ðAi \ AcÞ
#ðAi [ AcÞ

: ð4Þ
Clearly, CLi 2 [0, 1]. The value of CLi has a definite implication, and measures the proportion of the same simple terms
between Ai and Ac. The larger CLi value indicates the higher consensus level associated with di. When CLi = 1, the decision
maker di achieves full agreement with the collective opinion.
4. Minimizing the number of adjusted simple terms in the consensus building

When decision makers’ opinions differ substantially, the consensus process assists the decision makers to adjust their
opinions to improve the consensus level. In the consensus process, the feedback mechanism plays an important role and
the core issue in the feedback mechanism is to provide the adjustment suggestions.

In this section, using the novel distance-based consensus measure, we develop an optimization-based two-stage proce-
dure to obtain the optimal adjusted suggestions in the hesitant linguistic GDM context, which minimizes the number of
adjusted simple terms in the consensus building.
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4.1. Basic ideas and model

Usually, distance-based approaches are used to measure the adjustments between original and adjusted individual
opinions. Here, we use the distance defined by Eq. (2) to measure the adjustments between Ai and Aiði ¼ 1; . . . ;nÞ,
i.e.,
dðAi;AiÞ ¼ #ðAi [ AiÞ �#ðAi \ AiÞ: ð5Þ
In order to preserve the original preference information as much as possible, we hope to minimize the adjustments
between the original and adjusted individual opinions of all decision makers. Namely,
min
Ai

Xn

i¼1

dðAi;AiÞ ¼min
Ai

Xn

i¼1

#ðAi [ AiÞ �#ðAi \ AiÞ
� �

: ð6Þ
Here, in the sense of the distance defined by Eq. (2), the value of minAi

Pn
i¼1dðAi;AiÞ has a definite implication, and measures

the minimum number of adjusted simple terms of all decision makers in consensus building.
Meanwhile, the main work in consensus building is to find adjusted individual opinions with an established consen-

sus level. In this paper, CL 2 ½0;1� is established as the threshold of CLi. Based on Definition 3.1, we have
CLi P CLði ¼ 1; . . . ;nÞ, i.e.,
# Ai \ Ac
� �

# Ai [ Ac
� �P CL ði ¼ 1; . . . ;nÞ: ð7Þ
Furthermore, Aiði ¼ 1; . . . ;nÞ and Ac are HFLTSs, i.e.,
Ai 2 Hsði ¼ 1; . . . ;nÞ; ð8Þ
and
Ac 2 Hs: ð9Þ
Additionally, in order to get relatively precise collective opinion Ac , the upper bound of #ðAcÞ is limited as b, i.e.,
#ðAcÞ 6 b: ð10Þ
Generally, we suggest b 6 3.
According to Eqs. (6)–(10), an optimization-based consensus model in the hesitant linguistic GDM is constructed

as:
minAi

Pn
i¼1 #ðAi [ AiÞ �#ðAi \ AiÞ
� �

s:t:

#ðAi\AcÞ
#ðAi[AcÞ

P CL i ¼ 1; . . . ;n

Ai 2 Hs i ¼ 1; . . . ;n

Ac 2 Hs

#ðAcÞ 6 b

8>>>>><
>>>>>:

8>>>>>>>>><
>>>>>>>>>:

ð11Þ
In model (11), the constraint condition #ðAi\AcÞ
#ðAi[AcÞ

P CLði ¼ 1; . . . ;nÞ guarantees all the decision makers can reach the estab-

lished consensus threshold CL. Meanwhile, the constraint conditions Ai 2 Hsði ¼ 1; . . . ;nÞ and Ac 2 Hs guarantee the adjusted
opinions are HFLTSs. In this paper, denote model (11) as P1, which we call minimum adjusted simple terms model (MASTM).

4.2. Procedure to solve minimum adjusted simple terms model with a mixed 0–1 linear programming model

In this subsection, we present a mixed 0–1 linear programming to obtain the optimal solutions to minimum adjusted sim-
ple terms model (i.e., P1).

In order to transform P1 into a mixed 0–1 linear programming model, three binary variables xj
i; yj

i and zj are introduced,
i.e.,
xj
i ¼

1 sj 2 Ai

0 sj R Ai

�
i ¼ 1; . . . ; n; j ¼ 0; . . . ; g; ð12Þ

yj
i ¼

1 sj 2 Ai

0 sj R Ai

(
i ¼ 1; . . . ;n; j ¼ 0; . . . ; g; ð13Þ
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and let
zj ¼
1 sj 2 Ac

0 sj R Ac

(
j ¼ 0; . . . ; g: ð14Þ
Then, Lemmas 4.1, 4.2, 4.3 are proposed.

Lemma 4.1
#ðAi [ AiÞ �#ðAi \ AiÞ ¼
Xg

j¼0

xj
i � yj

i

��� ��� ði ¼ 1; . . . ;nÞ: ð15Þ
Proof of Lemma 4.1 is provided in Appendix.
Lemma 4.2
# Ai \ Ac
� �

# Ai [ Ac
� � ¼

Pg
j¼0 yj

i þ
Pg

j¼0 zj �
Pg

j¼0 yj
i � zj

��� ���Pg
j¼0 yj

i þ
Pg

j¼0 zj þ
Pg

j¼0 yj
i � zj

��� ��� ði ¼ 1; . . . ;nÞ: ð16Þ
Proof of Lemma 4.2 is provided in Appendix.
Lemma 4.3

(1) Aiði ¼ 1; . . . ;nÞ is a HFLTS if and only if the following conditions are satisfied:
1)
Pg�1

j¼0 yjþ1
i � yj

i

��� ��� 6 2 i ¼ 1; . . . ;n;

2) y0
i þ yg

i 6 1 i ¼ 1; . . . ;n.
(2) Ac is a HFLTS if and only if the following conditions are satisfied:
1)
Pg�1

j¼0 zjþ1 � zj
�� �� 6 2;

2) z0 + zg
6 1.
Proof of Lemma 4.3 is provided in Appendix.
Based on Lemmas 4.1, 4.2, 4.3, we can obtain Theorem 4.1.

Theorem 4.1. P1 can be transformed into model (17):
min
Pn

i¼1

Pg
j¼0 xj

i � yj
i

��� ���

s:t:

Pg

j¼0
yj

i
þ
Pg

j¼0
zj�
Pg

j¼0
yj

i
�zjj jPg

j¼0
yj

i
þ
Pg

j¼0
zjþ
Pg

j¼0
yj

i
�zjj jP CL i ¼ 1; . . . ; n;

Pg�1
j¼0 yjþ1

i � yj
i

��� ��� 6 2 i ¼ 1; . . . ; n;

y0
i þ yg

i 6 1 i ¼ 1; . . . ; n;Pg�1
j¼0 zjþ1 � zj
�� �� 6 2

z0 þ zg
6 1Pg

j¼0 zj
6 b

yj
i ¼ 0 or 1 i ¼ 1; . . . ; n; j ¼ 0; . . . ; g;

zj ¼ 0 or 1 j ¼ 0; . . . ; g:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð17Þ
Theorem 4.1 shows that the optimal solution to P1 can be obtained by solving model (17). In order to solve model (17),
Theorem 4.2 is provided to transform model (17) into a mixed 0–1 linear programming model.
Theorem 4.2. By introducing eight transformed decision variables: bj
i ¼ xj

i � yj
i; cj

i ¼ bj
i

��� ���; ej
i ¼ yj

i � zj; f j
i ¼ ej

i

��� ���; hj
i ¼ yjþ1

i �
yj

i; oj
i ¼ hj

i

��� ���; uj ¼ zjþ1 � zj and vj = jujj. Model (17) can be transformed into a mixed 0–1 linear programming model (18):
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min
Pn

i¼1

Pg
j¼0 cj

i

s:t:

bj
i ¼ xj

i � yj
i i ¼ 1; . . . ;n; j ¼ 0; . . . ; g;

bj
i 6 cj

i i ¼ 1; . . . ;n; j ¼ 0; . . . ; g;

�bj
i 6 cj

i i ¼ 1; . . . ;n; j ¼ 0; . . . ; g;

ð1� CLÞ
Pg

j¼0yj
i þ ð1� CLÞ

Pg
j¼0zj � ð1þ CLÞ

Pg
j¼0f j

i P 0 i ¼ 1; . . . ;n;

ej
i ¼ yj

i � zj i ¼ 1; . . . ;n; j ¼ 0; . . . ; g;

ej
i 6 f j

i i ¼ 1; . . . ;n; j ¼ 0; . . . ; g;

�ej
i 6 f j

i i ¼ 1; . . . ;n; j ¼ 0; . . . ; g;Pg�1
j¼0 oj

i 6 2 i ¼ 1; . . . ;n;

hj
i ¼ yjþ1

i � yj
i i ¼ 1; . . . ;n; j ¼ 0; . . . ; g � 1;

hj
i 6 oj

i i ¼ 1; . . . ;n; j ¼ 0; . . . ; g � 1;

�hj
i 6 oj

i i ¼ 1; . . . ;n; j ¼ 0; . . . ; g � 1;

y0
i þ yg

i 6 1 i ¼ 1; . . . ;n;Pg�1
j¼0 v j

6 2

uj ¼ zjþ1 � zj j ¼ 0; . . . ; g � 1;

uj
6 v j j ¼ 0; . . . ; g � 1;

�uj
6 v j j ¼ 0; . . . ; g � 1;

z0 þ zg
6 1Pg

j¼0zj
6 b

yj
i ¼ 0 or 1 i ¼ 1; . . . ;n; j ¼ 0; . . . ; g;

zj ¼ 0 or 1 j ¼ 0; . . . ; g:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð18Þ
Proof of Theorem 4.2 is provided in Appendix.

In this paper, denote model (18) as P01. Theorem 4.2 guarantees the equivalence between P1 and P01. So, to simplify the
notation, models P1 and P01 are called P1 in this paper.

4.3. Optimizing the optimal solutions to minimum adjusted simple terms model by Manhattan distance

In Section 4.2, we obtain the optimal solution(s) to P1. However, in some situations, the optimal solution(s) to P1 is not
unique. Particularly, some of the optimal solutions are not reasonable enough (in some sense). For illustrating this idea, an
example is shown as follows:

Example 4.1. Let S1 ¼ s1
0; . . . ; s1

6

� �
be the established linguistic term set, which is defined in Section 6.1, and five decision

makers D = {d1, d2, d3, d4, d5} provide their preferences by HFLTSs of S1 to assess an alternative. We assume that the original
individual opinions of these five decision makers are A ¼ ðA1;A2;A3;A4;A5Þ ¼ s1

3; s
1
4

� �
; s1

4; s
1
5; s

1
6

� �
; s1

0; s
1
1

� �
;

�
s1

6

� �
; s1

2; s
1
3; s

1
4

� �
Þ. Then we use P1 to obtain the optimal solution (for details of the solving process see Section 6.1), i.e.,

A ¼ ðA1;A2;A3;A4;A5Þ ¼ s1
3; s

1
4

� �
; s1

2; s
1
3; s

1
4; s

1
5; s

1
6

� �
; s1

0; s
1
1; s

1
2; s

1
3; s

1
4

� �
; s1

2; s
1
3

� �
; s1

2; s
1
3; s

1
4

� �� 	
, and Ac ¼ s1

2; s
1
3; s

1
4

� �
. Here, we can

construct another set of HFLTSs, A ¼ A1;A2;A3;A4;A5

� �
and Ac , where Ai ¼

Ai i ¼ 1;2;3;5
s1

3; s
1
4

� �
i ¼ 4

�
and Ac ¼ fs1

2; s
1
3; s

1
4g.

Aiði ¼ 1;2;3;4;5Þ satisfies
# Ai\Ac

� �
# Ai[Ac

� �P CL and
P5

i¼1 d Ai;Ai

� �
¼
P5

i¼1dðAi;AiÞ. As a result, A is also an optimal solution to P1.

Through Example 4.1, we present two issues with P1:

(1) In some situations, the optimal solutions to P1 are not unique.
(2) S is an ordered linguistic term set, intuitively, the deviation between A4(i.e., s1

6

� �
) and A4 (i.e., s1

2; s
1
3

� �
) is larger than the

deviation between A4 and A4 (i.e, s1
3; s

1
4

� �
), which implies some of the optimal solutions to P1 are not reasonable

enough.
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So, it is necessary to further optimize the optimal solutions to P1. In order to do this, we introduce another approach for
measuring the distance between two HFLTSs. Let s 2 S, we denote ind(s) to be the position index (or lower index) of s in S. For
example, if s = sj, then ind(sj) = j. According to the Manhattan distance, a natural distance between two HFLTSs is defined as
Definition 4.1.

Definition 4.1. For two HFLTSs E and G, the distance between E and G can be defined as:
lðE;GÞ ¼ indðEþÞ � indðGþÞ
�� ��þ indðE�Þ � indðG�Þj j; ð19Þ
where E+ and E� respectively denote the upper bound and the lower bound of E, and G+ and G� respectively denote the upper
bound and the lower bound of G.

Then, we optimize the optimal solutions to P1 by minimizing the Manhattan distance between Ai and OAi, defined by Def-
inition 4.1, i.e.,
min
OAi

Xn

i¼1

lðAi;OAiÞ ¼min
OAi

Xn

i¼1

ind OAi
þ

� �
� ind Aþi

� 	��� ���þ ind OAi
�

� �
� ind A�i

� 	��� ���� �
; ð20Þ
where ðOA1; . . . ;OAn;OAcÞ is optimal solution to P1, and thus must satisfy the conditions (21)–(25):
Xn

i¼1

dðAi;OAiÞ ¼
Xn

i¼1

#ðAi [ OAiÞ �#ðAi \ OAiÞ
� �

¼ M; ð21Þ
where M is the optimal objective function value of P1,
#ðOAi \ OAcÞ
#ðOAi [ OAcÞ

P CLði ¼ 1; . . . ; nÞ; ð22Þ

OAi 2 Hsði ¼ 1; . . . ;nÞ; ð23Þ

OAc 2 Hs; ð24Þ
and
#ðOAcÞ 6 b: ð25Þ
Then, based on Eqs. (20)–(25), a two-stage model can be constructed as:
minOAi

Pn
i¼1 ind OAi

þ
� �

� ind Aþi
� 	��� ���þ ind OAi

�
� �

� ind A�i
� 	��� ���� �

s:t:

Pn
i¼1 ð#ðAi [ OAiÞ �#ðAi \ OAiÞÞ ¼ M

#ðOAi\OAcÞ
#ðOAi[OAcÞ

P CL i ¼ 1; . . . ;n;

OAi 2 Hs i ¼ 1; . . . ;n;

OAc 2 Hs

#ðOAcÞ 6 b

8>>>>>>>>>>><
>>>>>>>>>>>:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð26Þ

� 	

In model (26), the constraint condition

# OAi\OAc

# OAi[OAc
� 	P CLði ¼ 1; . . . ;nÞ guarantees all the decision makers can reach the estab-

lished consensus threshold CL. Meanwhile, the constraint condition
Pn

i¼1ð#ðAi [ OAiÞ �#ðAi \ OAiÞÞ ¼ M guarantees the
adjusted simple terms between original and adjusted individual opinions is minimum. The constraint conditions

OAi 2 Hsði ¼ 1; . . . ;nÞ and OAc 2 Hs guarantee the adjusted opinions are HFLTSs. In this paper, denote model (26) as P2.
Subsequently, we show that P2 can also be transformed into a mixed 0–1 linear programming model. In order to do so,

Lemma 4.4 is proposed.

Lemma 4.4. For i = 1, . . . , n, we have

(1) ind OAi
�

� �
¼maxj¼0;...;g

Pj
k¼0 yj

i � yk
i

� �
;

(2) ind OAi
þ

� �
¼maxj¼0;...;g

Pj
k¼0 yj

i � yk
i

� �
þ
Pg

j¼0 yj
i � 1;

(3) ind A�i
� 	

¼maxj¼0;...;g
Pj

k¼0 xj
i � xk

i

� �
;

(4) ind Aþi
� 	

¼maxj¼0;...;g
Pj

k¼0 xj
i � xk

i

� �
þ
Pg

j¼0 xj
i � 1.
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Proof of Lemma 4.4 is provided in Appendix.
Let
max
j¼0;...;g

Xj

k¼0

xj
i � xk

i

� �
þ
Xg

j¼0

xj
i ¼ Xi i ¼ 1; . . . ;n; ð27Þ

max
j¼0;...;g

Xj

k¼0

yj
i � yk

i

� �
þ
Xg

j¼0

yj
i � Xi

�����
����� 6 ri i ¼ 1; . . . ;n; ð28Þ
and let
max
j¼0;...;g

Xj

k¼0

yj
i � yk

i

� �
þ
Xg

j¼0

xj
i � Xi

�����
����� 6 ti i ¼ 1; . . . ;n: ð29Þ
Based on Lemmas 4.1, 4.2, 4.3, 4.4, we can obtain Theorem 4.3.

Theorem 4.3. P2 can be transformed into model (30):
min
Pn

i¼1 ðri þ tiÞ

s:t:

maxj¼0;...;g
Pj

k¼0 xj
i � xk

i

� �
þ
Pg

j¼0 xj
i ¼ Xi i ¼ 1; . . . ;n;

Pj
k¼0 yj

i � yk
i

� �
� Xi þ

Pg
j¼0 yj

i 6 ri i ¼ 1; . . . ;n; j ¼ 0; . . . ; g;

Xi �
Pj

k¼0 yj
i � yk

i

� �
�
Pg

j¼0 yj
i 6 ri þ Hð1�wijÞ i ¼ 1; . . . ;n; j ¼ 0; . . . ; g;

Pg
j¼0 wij P 1 i ¼ 1; . . . ;n;

Pj
k¼0 yj

i � yk
i

� �
� Xi þ

Pg
j¼0 xj

i 6 ti i ¼ 1; . . . ;n; j ¼ 0; . . . ; g;

Xi �
Pj

k¼0 yj
i � yk

i

� �
�
Pg

j¼0 xj
i 6 ti þ Hð1� hijÞ i ¼ 1; . . . ;n; j ¼ 0; . . . ; g;

Pg
j¼0hij P 1 i ¼ 1; . . . ;n;

Pn
i¼1

Pg
j¼0 xj

i � yj
i

��� ��� ¼ M

Pg

j¼0
yj

i
þ
Pg

j¼0
zj�
Pg

j¼0
yj

i
�zjj jPg

j¼0
yj

i
þ
Pg

j¼0
zjþ
Pg

j¼0
yj

i
�zjj jP CL i ¼ 1; . . . ;n;

Pg�1
j¼0 yjþ1

i � yj
i

��� ��� 6 2 i ¼ 1; . . . ;n;

y0
i þ yg

i 6 1 i ¼ 1; . . . ;n;Pg�1
j¼0 zjþ1 � zj
�� �� 6 2 i ¼ 1; . . . ;n;

z0 þ zg
6 1Pg

j¼0 zj
6 b

yj
i; wij; hij ¼ 0 or 1 i ¼ 1; . . . ;n; j ¼ 0; . . . ; g;

zj ¼ 0 or 1 j ¼ 0; . . . ; g:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð30Þ
Proof of Theorem 4.3 is provided in Appendix.

Similarly to Theorem 4.2, model (30) can be equivalently transformed into a mixed 0–1 linear programming model.
Note 2. Solving models P1 and P2 obtains the optimal adjusted individual opinions, which should only be considered as

decision aids that decision makers use as reference when modifying their individual opinions.
Note 3. In classical GDM studies, the number of decision makers in the most effective GDM context is less than 7 (see

Thomas and Fink [35]). Meanwhile, the granularity of a linguistic term set used by decision makers without confusion is less
than 9 (see Miller [27]). As a result, the proposed mixed 0–1 linear programming models are usually small-scale optimization
problems, except in the case of the large-scale GDM that was recently proposed in [28]. Generally, mixed 0–1 linear
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programming models with a few hundred binary variables can be effectively solved by several software packages (e.g., Lingo
and CEPLEX).

5. Further discussion regarding models P1 and P2

This section provides further discussion to justify models P1 and P2. Specifically, Section 5.1 presents several desirable
properties of P1, and Section 5.2 discusses the problem of uniqueness of solution to model P2.

5.1. Desirable properties of model P1

Let S, Ai, Ai and Ac be as before, then the following properties of P1 (i.e., Properties 5.1–5.6) are satisfied:

Property 5.1. Idempotency. If Ai = Ai+1 for i = 1, . . ., n � 1, then Ac ¼ Ai.

Proof of Property 5.1 is provided in Appendix.

Property 5.2. mini¼1;...;nðAiÞ 6 Ac
6 maxi¼1;...;nðAiÞ.

Proof of Property 5.2 is provided in Appendix.

Property 5.2 guarantees that the adjusted collective opinion obtained by P1 ranges from the minimum original individual
opinion to the maximum original individual opinion.

Note 4. In [29], MS
1 > MS

2 if env MS
1

� �
> env MS

2

� �
. Furthermore, in this paper we define env MS

1

� �
> env MS

2

� �
if

ind MS�
1ð Þþind MSþ

1ð Þ
2 >

ind MS�
2ð Þþind MSþ

2ð Þ
2 .

Property 5.3. Commutativity. Let (Q1, Q2, . . . , Qn) be a permutation of (A1, A2, . . . , An), and let Qc be the adjusted collective opinion
that was obtained by P1, and associated with (Q1, Q2, . . . , Qn). Then, Ac ¼ Qc.

Proof of Property 5.3 is provided in Appendix.

Property 5.4. Monotonicity. Let A0 ¼ A01;A
0
2; . . . ;A0n

� 	
be another set of HFLTSs of S, where Ai 6 A0i for i = 1, . . . , n. Let A0c be the

adjusted collective opinion that was obtained by P1, and associated with A01;A
0
2; . . . ;A0n

� 	
. Then, when n 6 2, Ac

6 A0c.

Proof of Property 5.4 is provided in Appendix.

Note 5. We assume that the adjusted collective opinion obtained by P1 also satisfies monotonicity when n > 2. However, it
would be an open problem if the property is completely validated.

Property 5.5.
# min min
i¼1;...;n

ðAiÞ
� 


;max max
i¼1;...;n

ðAiÞ
� 
� �

6 # min min
i¼1;...;n

ðAiÞ
� 


;max max
i¼1;...;n

ðAiÞ
� 
� �

:

Proof of Property 5.5 is provided in Appendix.

Property 5.5 shows that the adjusted individual opinions obtained by P1 concentrate into a smaller domain than the ori-
ginal individual opinions.

Property 5.6. A1 \ � � � \ An # Ac .

Proof of Property 5.6 is provided in Appendix.

Property 5.6 guarantees that the intersection of the adjusted individual opinions is a subset of the adjusted collective
opinion. In other words, if sj 2 S is used by all decision makers to assess an alternative, then the collective will be in favor
of using sj to assess the alternative.

5.2. Uniqueness of solution to model P2

Before proposing the uniqueness of the solution to model P2, we introduce Lemmas 5.1 and 5.2.
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Lemma 5.1. If ðA1; . . . ;An;A
cÞ is an optimal solution to P1 and $p 2 {1, . . . , n}, Ap � Ac and Ap \ Ac ¼£, then ��A ¼ A1; . . . ;An;A

c
� �

,

where Ai ¼ Ai (i – p) and Ac ¼ Ac, is an optimal solution to P1 if and only if Ap satisfies the following conditions:

(1) Ap � Ac;

(2) # Ap

� �
¼ #ðApÞ.

Proof of Lemma 5.1 is provided in Appendix.

Lemma 5.2. Let [a, b] and [c, d] be two real number intervals, and [a, b] \ [c, d] = £. Let k be a constant and 0 6 k < d � c. Then,
the mathematical programming
Table 1
The val

xj
i

i = 1
i = 2
i = 3
i = 4
i = 5
minx;yðjx� aj þ jy� bjÞ

s:t:
½x; y� � ½c;d�
y� x ¼ k

�
8><
>: ; ð31Þ
where x and y are decision variables, has a unique solution.

Clearly, Lemma 5.2 can be directly obtained.
Based on Lemmas 5.1 and 5.2, the uniqueness of the solution to model P2 is presented as Theorem 5.1.

Theorem 5.1. The optimal solution to P2 is unique.

Proof of Theorem 5.1 is provided in Appendix.
Theorem 5.1 guarantees the uniqueness of solution to model P2, through which we obtain the optimal adjustment sug-

gestions to support the consensus reaching process in the hesitant linguistic GDM.

6. Illustrative examples

In order to show how these theoretical results work in practice, let us consider the following two examples.

6.1. Example 1

We suppose that five decision makers, D = {d1, d2, d3, d4, d5}, want to assess an alternative using HFLTSs of the linguistic
term set S1, where
S1 ¼ s1
0 ¼ neither; s1

1 ¼ very low; s1
2 ¼ low; s1

3 ¼ medium; s1
4 ¼ high; s1

5 ¼ very high; s1
6 ¼ absolute

� �
:

Decision makers provide their original individual preferences using HFLTSs of S1, i.e.,
A ¼ ðA1;A2;A3;A4;A5Þ ¼ s1
3; s

1
4

� �
; s1

4; s
1
5; s

1
6

� �
; s1

0; s
1
1

� �
; s1

6

� �
; s1

2; s
1
3; s

1
4

� �� 	
:

According to these original individual opinions, using Eq. (12) obtains the values of xj
iði ¼ 1; . . . ;5; j ¼ 0; . . . ;6Þ, which are

listed in Table 1.
We set CL ¼ 0:6 and b = 3. After determining the values of xj

iði ¼ 1; . . . ;5; j ¼ 0; . . . ;6Þ;CL and b, we use the mixed 0–1 lin-
ear programming model P01 obtains model (32):
ues of xj
i .

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

0 0 0 1 1 0 0
0 0 0 0 1 1 1
1 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 1 1 1 0 0



Table 3
The val

zj

Table 2
The val

yj
i

i = 1
i = 2
i = 3
i = 4
i = 5
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min
P5

i¼1

P6
j¼0cj

i

s:t:

xj
i � yj

i 6 cj
i i ¼ 1;2;3;4;5; j ¼ 0;1;2;3;4;5;6

yj
i � xj

i 6 cj
i i ¼ 1;2;3;4;5; j ¼ 0;1;2;3;4;5;6;

0:4
P6

j¼0yj
i þ 0:4

P6
j¼0zj � 1:6

P6
j¼0f j

i P 0 i ¼ 1;2;3;4;5;

yj
i � zj

6 f j
i i ¼ 1;2;3;4;5; j ¼ 0;1;2;3;4;5;6

zj � yj
i 6 f j

i i ¼ 1;2;3;4;5; j ¼ 0;1;2;3;4;5;6P5
j¼0oj

i 6 2 i ¼ 1;2;3;4;5;

yjþ1
i � yj

i 6 oj
i i ¼ 1;2;3;4;5; j ¼ 0;1;2;3;4;5;

yj
i � yjþ1

i 6 oj
i i ¼ 1;2;3;4;5; j ¼ 0;1;2;3;4;5;

y0
i þ y6

i 6 1 i ¼ 1;2;3;4;5;P5
j¼0v j

6 2

zjþ1 � zj
6 v j j ¼ 0;1;2;3;4;5;

zj � zjþ1
6 v j j ¼ 0;1;2;3;4;5;

z0 þ z6
6 1P6

j¼0zj
6 3

yj
i ¼ 0 or 1 i ¼ 1;2;3;4;5; j ¼ 0;1;2;3;4;5;6;

zj ¼ 0 or 1 j ¼ 0;1;2;3;4;5;6:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

: ð32Þ
Solving model (32) by the software package LINGO, we obtain the values of yj
iði ¼ 1; . . . ;5; j ¼ 0; . . . ;6Þ and zj(j = 0, . . . , 6),

which are listed in Tables 2 and 3, respectively.
Subsequently, based on Eqs. (13) and (14), we can obtain the adjusted individual opinions, i.e.,
A ¼ ðA1;A2;A3;A4;A5Þ ¼ s1
3; s

1
4

� �
; s1

2; s
1
3; s

1
4; s

1
5; s

1
6

� �
; s1

0; s
1
1; s

1
2; s

1
3; s

1
4

� �
; s1

2; s
1
3

� �
; s1

2; s
1
3; s

1
4

� �� 	
;

and the adjusted collective opinion Ac ¼ s1
2; s

1
3; s

1
4

� �
.

Let M ¼
P5

i¼1dðAi;AiÞ ¼ 8 be the optimal objective function value of P1. After determining the value of M, we use P2 to fur-
ther optimize the optimal solutions to model (32). Finally, we can obtain the optimal adjusted individual opinions, i.e.,
OA ¼ ðOA1;OA2;OA3;OA4;OA5Þ ¼ s1
3; s

1
4

� �
; s1

2; s
1
3; s

1
4; s

1
5; s

1
6

� �
; s1

0; s
1
1; s

1
2; s

1
3; s

1
4

� �
; s1

3; s
1
4

� �
; s1

2; s
1
3; s

1
4

� �� 	
;

and the optimal adjusted collective opinion OAc ¼ s1
2; s

1
3; s

1
4

� �
.

Clearly,
P5

i¼1dðAi;AiÞ ¼ 8;
P5

i¼1lðAi;AiÞ ¼ 12;
P5

i¼1dðAi;OAiÞ ¼ 8 and
P5

i¼1lðAi;OAiÞ ¼ 10. In other words, OA is also the opti-
mal solution to P1, however, the Manhattan distance between Ai and OAi (i = 1, . . . , n) is smaller than the Manhattan distance
between Ai and Ai (i = 1, . . . , n).
ues of zj.

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

0 0 1 1 1 0 0

ues of yj
i .

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

0 0 0 1 1 0 0
0 0 1 1 1 1 1
1 1 1 1 1 0 0
0 0 1 1 0 0 0
0 0 1 1 1 0 0
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6.2. Example 2

We suppose that a committee is composed of seven decision makers, D = {d1, d2, . . . , d7}, which compare five alternatives
X = {x1, x2, . . . , x5} by using HFLTSs of the linguistic term set S2, where
S2 ¼ s2
0 ¼ neither; s2

1 ¼ very low; s2
2 ¼ low; s2

3 ¼ slightly low; s2
4 ¼ medium; s2

5 ¼ slightly high; s2
6 ¼ high; s2

7

�
¼ very high; s2

8 ¼ absolute
�
:

and construct, respectively, the linguistic preference relations PðkÞ ¼ pðkÞij

� �
5�5
ðk ¼ 1;2; . . . ;7; i; j ¼ 1;2; . . . ;5Þ, where pðkÞij

denotes the linguistic preference degree of the alternative xi over xj for the decision maker dk. They are listed as follows:
Pð1Þ ¼

� s2
1; s

2
2

� �
s2

7

� �
s2

2; s
2
3

� �
s2

5; s
2
6

� �
s2

5; s
2
6

� �
� s2

4; s
2
5

� �
s2

1; s
2
2; s

2
3

� �
s2

2

� �
s2

2

� �
s2

3; s
2
4

� �
� s2

6; s
2
7

� �
s2

4; s
2
5; s

2
6

� �
s2

6; s
2
7

� �
s2

5; s
2
6; s

2
7

� �
s2

1; s
2
2

� �
� s2

4; s
2
5; s

2
6

� �
s2

1; s
2
2

� �
s2

5

� �
s2

1; s
2
2

� �
s2

1; s
2
2; s

2
3

� �
�

0
BBBBBB@

1
CCCCCCA

Pð2Þ ¼

� s2
1; s

2
2

� �
s2

4; s
2
5; s

2
6

� �
s2

2; s
2
3; s

2
4

� �
s2

4; s
2
5; s

2
6

� �
s2

4; s
2
5; s

2
6

� �
� s2

6

� �
s2

3

� �
s2

0; s
2
1

� �
s2

0; s
2
1

� �
s2

4

� �
� s2

7; s
2
8

� �
s2

4; s
2
5

� �
s2

6; s
2
7

� �
s2

7

� �
s2

0; s
2
1; s

2
2

� �
� s2

5

� �
s2

1; s
2
2

� �
s2

4; s
2
5; s

2
6

� �
s2

1; s
2
2; s

2
3

� �
s2

3

� �
�

0
BBBBBB@

1
CCCCCCA

Pð3Þ ¼

� s2
3; s

2
4

� �
s2

4; s
2
5

� �
s2

4

� �
s2

0; s
2
1; s

2
2

� �
s2

0; s
2
1; s

2
2

� �
� s2

5; s
2
6

� �
s2

6; s
2
7

� �
s2

0; s
2
1; s

2
2

� �
s2

1; s
2
2

� �
s2

2

� �
� s2

5

� �
s2

4

� �
s2

3

� �
s2

1; s
2
2

� �
s2

2

� �
� s2

3; s
2
4; s

2
5

� �
s2

3; s
2
4

� �
s2

4; s
2
5

� �
s2

2

� �
s2

4; s
2
5; s

2
6

� �
�

0
BBBBBB@

1
CCCCCCA

Pð4Þ ¼

� s2
3; s

2
4

� �
s2

5; s
2
6

� �
s2

1; s
2
2

� �
s2

0; s
2
1

� �
s2

4; s
2
5

� �
� s2

6; s
2
7

� �
s2

2; s
2
3

� �
s2
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� �
s2

2; s
2
3

� �
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� �
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� �
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� �
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� �
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0; s
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1; s
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� �
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� �
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� �
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5; s
2
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2
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� �
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3; s
2
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� �
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5; s
2
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� �
s2

5; s
2
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� �
s2

2

� �
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2
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Here, we set b = 3 and CL ¼ 0:6. Then, we use models P1 and P2 to obtain the optimal adjusted individual preferences

pð1Þij ; pð2Þij ; . . . ; pð7Þij and the adjusted collective preference pðcÞij , associated with pð1Þij ; pð2Þij ; . . . ; pð7Þij , respectively. Let

PðkÞ ¼ pðkÞij

� �
5�5

(k = 1, 2, . . . , 7) and PðcÞ ¼ pðcÞij

� �
5�5

, which are listed as follows:
Pð1Þ ¼

� s2
1; s

2
2; s

2
3

� �
s2

6; s
2
7

� �
s2

2; s
2
3

� �
s2

5; s
2
6

� �
s2

5; s
2
6

� �
� s2

5; s
2
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� �
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2
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� �
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2
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� �
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2
2

� �
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2
4

� �
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2
7

� �
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4; s
2
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2
6

� �
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6; s
2
7

� �
s2

5; s
2
6; s

2
7

� �
s2

1; s
2
2

� �
� s2

4; s
2
5; s

2
6

� �
s2

1; s
2
2

� �
s2

5; s
2
6

� �
s2

1; s
2
2; s

2
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� �
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2; s
2
3; s

2
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2
5

� �
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Pð2Þ ¼
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1; s

2
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2
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� �
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2
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2
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� �
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2; s
2
3; s

2
4

� �
s2

4; s
2
5; s

2
6

� �
s2

4; s
2
5; s

2
6

� �
� s2

6; s
2
7

� �
s2

2; s
2
3

� �
s2

0; s
2
1

� �
s2

0; s
2
1

� �
s2

3; s
2
4

� �
� s2
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2
6; s

2
7; s

2
8

� �
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2
5

� �
s2
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2
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� �
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2
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� �
s2
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1; s

2
2

� �
� s2

4; s
2
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� �
s2

1; s
2
2

� �
s2

4; s
2
5; s

2
6

� �
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2; s

2
3

� �
s2
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2
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� �
�
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CCCCCCCA

Pð3Þ ¼
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� �
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6; s

2
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� �
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3; s
2
4

� �
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4; s
2
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� �
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4; s
2
5

� �
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2
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� �
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2; s
2
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� �
s2

0; s
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1; s

2
2

� �
s2
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2
2

� �
s2
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2
3

� �
� s2
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2
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� �
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2
5

� �
s2

5; s
2
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� �
s2

5; s
2
6

� �
s2
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2
2

� �
� s2

3; s
2
4; s

2
5

� �
s2

2; s
2
3

� �
s2
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2
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� �
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2
3

� �
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2
4; s

2
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2
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� �
�
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Pð4Þ ¼

� s2
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2
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� �
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2
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� �
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2
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� �
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2
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� �
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2
1; s

2
2

� �
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2
2

� �
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2; s
2
3

� �
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2
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� �
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2
5; s

2
6

� �
s2

5; s
2
6; s

2
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2
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� �
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2
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� �
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2
2

� �
� s2

4; s
2
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2
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� �
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2; s
2
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� �
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4; s
2
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� �
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Pð5Þ ¼
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2; s

2
3

� �
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� �
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� �
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2
5; s

2
6

� �
s2

5; s
2
6

� �
� s2

5; s
2
6

� �
s2

1; s
2
2

� �
s2

0; s
2
1; s

2
2

� �
s2

0; s
2
1

� �
s2

3; s
2
4

� �
� s2

5; s
2
6

� �
s2

3; s
2
4; s

2
5

� �
s2

5; s
2
6; s

2
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� �
s2

5; s
2
6

� �
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2
1; s

2
2

� �
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2
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2
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� �
s2

2; s
2
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� �
s2

4; s
2
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2
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� �
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2
4

� �
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2
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� �
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2
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� �
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5; s
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� �
� s2

5; s
2
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� �
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1; s
2
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� �
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1; s

2
2

� �
s2
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� �
s2

3; s
2
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� �
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2
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2
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2
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� �
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2
6

� �
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� �
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2
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� �
s2

4; s
2
5

� �
�

0
BBBBBBB@

1
CCCCCCCA

Pð7Þ ¼
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2
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� �
s2
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2
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� �
s2

4; s
2
5; s

2
6; s

2
7

� �
� s2

6; s
2
7

� �
s2

1; s
2
2

� �
s2
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2
2

� �
s2
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2
2

� �
s2
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2
4

� �
� s2
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2
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� �
s2

3; s
2
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2
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� �
s2

5; s
2
6

� �
s2
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2
6; s

2
7; s

2
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� �
s2

1; s
2
2

� �
� s2

4; s
2
5; s

2
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� �
s2

2; s
2
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� �
s2

5; s
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� �
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PðcÞ ¼
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2
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2
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2
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2
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2
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� �
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2
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2
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� �
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2
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� �
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2
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4; s
2
5; s

2
6

� �
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Using this approach, the decision makers D = {d1, d2, . . . , d7} can adjust their individual preference relations with the
established consensus level.

7. Conclusions

This paper focuses on the consensus issue in the hesitant linguistic GDM problem. The main contributions presented are
as follows:

(1) We provide a new method of measuring the difference between two HFLTSs, which reflects the number of different
simple terms between two HFLTSs. Following this method, a novel distance-based approach is developed to measure
the consensus level.

(2) We propose an optimization-based two-stage model to obtain the optimal adjusted individual opinions in the hesitant
linguistic GDM, which minimizes the number of adjusted simple terms in the consensus building. Mixed 0–1 linear
programming models are proposed to solve this two-stage model.

(3) Several desirable properties are proposed to justify the proposal, and the uniqueness of the solution to the proposed
consensus model is proven.

Moreover, we argue that the following directions should be considered for further research:

(1) Models P1 and P2 are transformed into mixed 0–1 linear programming models, which can be effectively solved in
small-scale GDM problems. However, nowadays societal and technological trends demand the management of lar-
ger-scale GDM problems, such as e-democracy and social networks [28]. In order to provide a decision aid for the
large-scale GDM, we argue that it would be useful in any future research to see if better algorithms for obtaining
the optimal solution to models P1 and P2 are proposed.

(2) Consensus building not only relates to mathematical models, but also to philosophical issues [19]. Therefore, it would be inter-
esting in any future research to see hesitant behaviors based on psychology being investigated in the consensus process.
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Appendix Proofs

Proof of Theorem 3.1. Obviously, d(Q, N) satisfies conditions (1), (2) and (4). Here we only have to prove that d(Q, N)
satisfies condition (3).

Because
dðQ ; PÞ þ dðP;NÞ ¼ #ðQ [ PÞ �#ðQ \ PÞ þ#ðP [ NÞ �#ðP \ NÞ
¼ #ðQÞ þ#ðPÞ � 2#ðQ \ PÞ þ#ðPÞ þ#ðNÞ � 2#ðP \ NÞ ð33Þ
and
dðQ ;NÞ ¼ #ðQÞ þ#ðNÞ � 2#ðQ \ NÞ: ð34Þ
Based on Eqs. (33) and (34), then
dðQ ; PÞ þ dðP;NÞ � dðQ ;NÞ ¼ 2ð#ðPÞ þ#ðQ \ NÞ �#ðQ \ PÞ �#ðP \ NÞÞ: ð35Þ
To discuss Eq. (35), we consider three cases:
Case 1: if #(Q \ P) + #(P \ N) < #(P), then d(Q, P) + d(P, N) � d(Q, N) > 0.
Case 2: if #(Q \ P) + #(P \ N) = #(P), then d(Q, P) + d(P, N) � d(Q, N) P 0.
Case 3: if #(Q \ P) + #(P \ N) > #(P), we have
#ðQ \ PÞ þ#ðP \ NÞ ¼ #ðPÞ þ#ðQ \ N \ PÞ;
then d(Q, P) + d(P, N) � d(Q, N) P 0.
This completes Proof of Theorem 3.1. h
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Proof of Lemma 4.1. Based on Eqs. (12) and (13), we introduce UAi
ðxÞ to denote #(Ai), i.e., UAi

ðxÞ ¼
Pg

j¼0 xj
i and introduce

UAi
ðyÞ to denote #ðAiÞ, i.e., UAi

ðyÞ ¼
Pg

j¼0 yj
i. Hence,
#ðAi [ AiÞ �#ðAi \ AiÞ ¼ UAi
ðxÞ þUAi

ðyÞ � 2
Xg

j¼0

xj
i � y

j
i ¼

Xg

j¼0

xj
i þ
Xg

j¼0

yj
i � 2

Xg

j¼0

xj
i � y

j
i

¼
Xg

j¼0

xj
i

� �2
þ
Xg

j¼0

yj
i

� �2
� 2

Xg

j¼0

xj
i � y

j
i ¼

Xg

j¼0

xj
i � yj

i

� �2
:

Due to xj
i; y

j
i being binary variables, Thus #ðAi [ AiÞ �#ðAi \ AiÞ ¼

Pg
j¼0 xj

i � yj
i

��� ���.
This completes Proof of Lemma 4.1. h
Proof of Lemma 4.2. According to Lemma 4.1, we can easily obtain:
#ðAi [ AcÞ �#ðAi \ AcÞ ¼
Xg

j¼0

yj
i � zj

��� ���; ð36Þ
while
#ðAi [ AcÞ ¼
Xg

j¼0

yj
i þ
Xg

j¼0

zj �#ðAi \ AcÞ: ð37Þ
Based on Eqs. (36) and (37), then
#ðAi \ AcÞ ¼
Pg

j¼0 yj
i þ
Pg

j¼0 zj �
Pg

j¼0 yj
i � zj

��� ���
2

; ð38Þ
and
#ðAi [ AcÞ ¼
Pg

j¼0 yj
i þ
Pg

j¼0 zj þ
Pg

j¼0 yj
i � zj

��� ���
2

: ð39Þ
According to Eqs. (38) and (39),
#ðAi \ AcÞ
#ðAi [ AcÞ

¼
Pg

j¼0 yj
i þ
Pg

j¼0 zj �
Pg

j¼0 yj
i � zj

��� ���Pg
j¼0 yj

i þ
Pg

j¼0 zj þ
Pg

j¼0 yj
i � zj

��� ��� :

This completes Proof of Lemma 4.2. h
Proof of Lemma 4.3.

Part 1: Proving that Aiði ¼ 1; . . . ; nÞ is a HFLTS if and only if the following conditions are satisfied:
1)
Pg�1

j¼0 yjþ1
i � yj

i

��� ��� 6 2 (i = 1, . . . , n);

2) y0
i þ yg

i 6 1ði ¼ 1; . . . ;nÞ.
Necessity: If Aiði ¼ 1; . . . ;nÞ is a HFLTS, then there are three distribution cases in Ai:

Case 1: Ai ¼ fs0; . . . ; skgð0 6 k < gÞ, then
Pg�1

j¼0 yjþ1
i � yj

i

��� ��� ¼ 1 and y0
i þ yg

i ¼ 1;

Case 2: Ai ¼ fsk; . . . ; sggð0 < k 6 gÞ, then
Pg�1

j¼0 yjþ1
i � yj

i

��� ��� ¼ 1 and y0
i þ yg

i ¼ 1;

Case 3: Ai ¼ fsk; . . . ; skþqgðk > 0; q P 0 and k + q < g), then
Pg�1

j¼0 yjþ1
i � yj

i

��� ��� ¼ 2 and y0
i þ yg

i ¼ 0.

Therefore, if Aiði ¼ 1; . . . ;nÞ is a HFLTS, it satisfies
Pg�1

j¼0 yjþ1
i � yj

i

��� ��� 6 2ði ¼ 1; . . . ;nÞ and y0
i þ yg

i 6 1ði ¼ 1; . . . ;nÞ.

Sufficiency: If
Pg�1

j¼0 yjþ1
i � yj

i

��� ��� 6 2ði ¼ 1; . . . ;nÞ, then there are four distribution cases in Aiði ¼ 1; . . . ;nÞ:

Case 1: Ai ¼ fs0; . . . skgð0 6 k < gÞ, then
Pg�1

j¼0 yjþ1
i � yj

i

��� ��� ¼ 1.
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Case 2: Ai ¼ fsk; . . . sggð0 < k 6 gÞ, then
Pg�1

j¼0 yjþ1
i � yj

i

��� ��� ¼ 1.

Case 3: Ai ¼ fsk; . . . skþqgðk > 0;q P 0 and k + q < g), then
Pg�1

j¼0 yjþ1
i � yj

i

��� ��� ¼ 2.

Case 4: Ai ¼ fs0; . . . sk; skþp; . . . sggðk P 0; p P 2 and k + p 6 g), then
Pg�1

j¼0 yjþ1
i � yj

i

��� ��� ¼ 2.

Requiring y0
i þ yg

i 6 1 for Ai, Case 4 is excluded. In cases 1–3, simple terms in Ai are consecutive, i.e., Aiði ¼ 1; . . . ;nÞ is a
HFLTS.

Part 2: Proving that Ac is a HFLTS if and only if the following conditions are satisfied:
1)
Pg�1

j¼0 zjþ1 � zj
i

��� ��� 6 2.

2) z0 + zg
6 1.

The proof of Part 2 is the same as the proof of Part 1.
This completes Proof of Lemma 4.3. h
Proof of Theorem 4.2. Eight transformed decision variables are introduced as: bj
i ¼ xj

i � yj
i; cj

i ¼ bj
i

��� ���; ej
i ¼ yj

i � zj;

f j
i ¼ ej

i

��� ���; hj
i ¼ yjþ1

i � yj
i; oj

i ¼ hj
i

��� ���; uj ¼ zjþ1 � zj and vj = jujj. Then

(1) bj
i ¼ xj

i � yj
i; bj

i 6 cj
i and �bj

i 6 cj
i guarantee cj

i P bj
i

��� ��� ¼ xj
i � yj

i

��� ���.
(2) ej

i ¼ yj
i � zj; ej

i 6 f j
i and �ej

i 6 f j
i guarantee f j

i P ej
i

��� ��� ¼ yj
i � zj

��� ���.
(3) hj

i ¼ yjþ1
i � yj

i; hj
i 6 oj

i and �hj
i 6 oj

i guarantee oj
i P hj

i

��� ��� ¼ yjþ1
i � yj

i

��� ���.
(4) uj = zj+1 � zj, uj

6 vj and �uj
6 vj guarantee v j P jujj ¼ jzjþ1 � zjj.

Therefore, P1 can be equivalently transformed into the mixed 0–1 linear programming model P01.
This completes Proof of Theorem 4.2. h
Proof of Lemma 4.4. For i = 1, . . . , n, we assume OAi ¼ fsp; . . . spþqg p P 0; 0 6 q ¼
Pg

j¼0 yj
i � 1 6 g

� �
. Based on Eq. (13), the

values yj
iðj ¼ 0; . . . ; gÞ of OAi can be denoted as y0

i ; y
1
i ; . . . ; yg

i

� �
¼ 0; . . . 0;|fflfflfflffl{zfflfflfflffl}

p�1

1; . . . 1;|fflfflfflffl{zfflfflfflffl}Pg

j¼0
yj

i

0; . . . 0

8>><
>>:

9>>=
>>;.

For all j 2 [0, g], we have
Xj

k¼0

yj
i � yk

i

� �
¼

0; j 2 ½0;p� 1�;
p; j 2 p;pþ

Pg
j¼0yj

i � 1
h i

;

�
Pg

j¼0yj
i; j 2 pþ

Pg
j¼0 yj

i; g
h i

:

8>>><
>>>: ð40Þ
According to (40), thus
indðOAi
�Þ ¼ p ¼ max

j¼0;...;g

Xj

k¼0

yj
i � yk

i

� �
;

and
indðOAi
þÞ ¼ max

j¼0;...;g

Xj

k¼0

yj
i � yk

i

� �
þ
Xg

j¼0

yj
i � 1:
In the same way, we can obtain
ind A�i
� 	

¼ max
j¼0;...;g

Xj

k¼0

xj
i � xk

i

� �
;

and
ind Aþi
� 	

¼ max
j¼0;...;g

Xj

k¼0

xj
i � xk

i

� �
þ
Xg

j¼0

xj
i � 1:
This completes Proof of Lemma 4.4. h
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Proof of Theorem 4.3. The process of obtaining Theorem 4.3 can be divided into four steps:
Step 1: The constrain conditions in P2, i.e.,
Xn

i¼1

ð#ðAi [ OAiÞ �#ðAi \ OAiÞÞ ¼ M

#ðOAi \ OAcÞ
#ðOAi [ OAcÞ

P CL i ¼ 1; . . . ;n;

OAi 2 Hs i ¼ 1; . . . ; n;

OAc 2 Hs

#ðOAcÞ 6 b

ð41Þ
can be transformed into the following mixed 0–1 constrain conditions in model (30):
Xn

i¼1

Xg

j¼0

xj
i � yj

i

��� ��� ¼ M

Pg

j¼0
yj

i
þ
Pg

j¼0
zj�
Pg

j¼0
yj

i
�zjj jPg

j¼0
yj

i
þ
Pg

j¼0
zjþ
Pg

j¼0
yj

i
�zjj jP CL i ¼ 1; . . . ;n;

Xg�1

j¼0

yjþ1
i � yj

i

��� ��� 6 2 i ¼ 1; . . . ;n;

y0
i þ yg

i 6 1 i ¼ 1; . . . ;n;

Xg�1

j¼0

zjþ1 � zj
�� �� 6 2 i ¼ 1; . . . ;n;

z0 þ zg
6 1Xg

j¼0

zj
6 b

ð42Þ
Step 2: Let maxj¼0;...;g
Pj

k¼0 xj
i � xk

i

� �
þ
Pg

j¼0 xj
i ¼ Xiði ¼ 1; . . . ;nÞ, and based on Lemma 4.4, the objective function

minOAi

Pn
i¼1ð ind OAi

þ
� �

� ind Aþi
� 	��� ���þ ind OAi

�
� �

� ind A�i
� 	��� ���Þ in P2 can be transformed as
min
Xn

i¼1

max
j¼0;...;g

Xj

k¼0

yj
i � yk

i

� �
þ
Xg

j¼0

yj
i � Xi

�����
�����þ max

j¼0;...;g

Xj

k¼0

yj
i � yk

i

� �
þ
Xg

j¼0

xj
i � Xi

�����
�����

 !
: ð43Þ
Step 3: Introducing two transformed decision variables: ri and ti(i = 1, . . . , n).

Similar to Proof of Theorem 4.2, let maxj¼0;...;g
Pj

k¼0 yj
i � yk

i

� �
þ
Pg

j¼0 yj
i � Xi

��� ��� 6 ri and maxj¼0;...;g
Pj

k¼0 yj
i � yk

i

� �
þ
Pg

j¼0 xj
i�

���
Xij 6 ti, then Eq. (43) can be further transformed as
min
Xn

i¼1

ðri þ tiÞ: ð44Þ
Meanwhile, several new constrain conditions are produced as:
max
j¼0;...;g

Xj

k¼0

yj
i � yk

i

� �
þ
Xg

j¼0

yj
i � Xi 6 ri; ð45Þ

Xi �
Xg

j¼0

yj
i � max

j¼0;...;g

Xj

k¼0

yj
i � yk

i

� �
6 ri; ð46Þ

max
j¼0;...;g

Xj

k¼0

yj
i � yk

i

� �
þ
Xg

j¼0

xj
i � Xi 6 ti; ð47Þ

Xi �
Xg

j¼0

xj
i � max

j¼0;...;g

Xj

k¼0

yj
i � yk

i

� �
6 ti: ð48Þ
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Step 4: Transforming Eqs. (45)–(48) into linear constrain conditions in model (30).

(1) For i ¼ 1; . . . ;n; maxj¼0;...;g
Pj

k¼0 yj
i � yk

i

� �
þ
Pg

j¼0 yj
i � Xi 6 ri if and only if the following constraints are satisfied:
Xj

k¼0

yj
i � yk

i

� �
6 ri þ Xi �

Xg

j¼0

yj
iðj ¼ 0; . . . ; gÞ: ð49Þ
(2) For i ¼ 1; . . . ;n; maxj¼0;...;g
Pj

k¼0 yj
i � yk

i

� �
þ
Pg

j¼0xj
i � Xi 6 ti if and only if the following constraints are satisfied:
Xj

k¼0

yj
i � yk

i

� �
� Xi þ

Xg

j¼o

xj
i 6 tiðj ¼ 0; . . . ; gÞ: ð50Þ
(3) For i ¼ 1; . . . ;n; Xi �
Pg

j¼0yj
i � ri 6 maxj¼0;...;g

Pj
k¼0 yj

i � yk
i

� �
if and only if the following constraints are satisfied:
Xi �
Xg

j¼0

yj
i � ri 6

Xj

k¼0

yj
i � yk

i

� �
þ Hð1�wijÞðj ¼ 0; . . . ; gÞ; ð51Þ
and
 Xg

j¼0

wij P 1; ð52Þ
where H is a very large number, wij 2 {0, 1}.
(4) For i = 1, . . . , n, Xi �

Pg
j¼0 xj

i � ti 6 maxj¼0;...;g
Pj

k¼0 yj
i � yk

i

� �
if and only if the following constraints are satisfied:
Xi �
Xg

j¼0

xj
i � ti 6

Xj

k¼1

yj
i � yk

i

� �
þ Hð1� hijÞðj ¼ 0; . . . ; gÞ; ð53Þ
and
 Xg

j¼0

hij P 1; ð54Þ
where H is a very large number, hij 2 {0,1}.
Therefore, based on Eqs. (42), (44), (49)–(54), all the constraint conditions in P2 can be equivalently transformed into the

constraint conditions in model (30).
This completes Proof of Theorem 4.3. h
Proof of Property 5.1. The original individual opinions Ai = Ai+1 for i = 1, . . . , n � 1, i.e., A1 = A2 = � � � = An. We use model P1 to

obtain the adjusted opinions Ai ¼ Aiði ¼ 1;2; . . . ;nÞ and Ac ¼ Ai, which guarantee the consensus level

CLi ¼ #ðAi\AcÞ
#ðAi[AcÞ

¼ 1ði ¼ 1; . . . ;nÞ (i.e., there is a full and unanimous consensus among decision makers) and the number of

adjusted simple terms
Pn

i¼1dðAi;AiÞ ¼ 0.
This completes Proof of Property 5.1. h
Proof of Property 5.2. From the implementation of the adjusted collective opinion, we have mini¼1;...;nðAiÞ 6

Ac
6maxi¼1;...;nðAiÞ. We first prove that mini¼1;...;nðAiÞP mini¼1;...;nðAiÞ. Using reduction to absurdity, we assume that

mini¼1;...;nðAiÞ < mini¼1;...;nðAiÞ. Afterward, we assume that P � {1, 2, . . . n} and Ap < mini¼1;...;nðAiÞ for p 2 P. Let

��A ¼ ðA1; . . . ;AnÞ, where
Ai ¼
mini¼1;...;n ðAiÞ; for i 2 P

Ai; for i R P

(
:

We find that
# Ac \max Ai

� �� �
# Ac [max Ai

� �� �P CL
and
# Ac \mini¼1;...;n Ai

� �� �
# Ac [mini¼1;...;n Ai

� �� �P CL:
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Thus, ��A is a feasible solution to P1. Since
Xn

i¼1

d Ai;Ai

� �
�
Xn

i¼1

d Ai;Ai

� �
¼
X
i2P

# Ai [ Ai

� �
�# Ai \ Ai

� �� �
� # Ai [ Ai

� �
�# Ai \ Ai

� �� �� �
< 0;
we have that
Pn

i¼1d Ai;Ai

� �
<
Pn

i¼1dðAi;AiÞ, which contradicts the fact that ðA1; . . . ;AnÞ is the optimal solution of P1. Similarly,

we can prove that maxi¼1;...;n fAig 6maxi¼1;...;nfAig.
This completes Proof of Property 5.2. h
Proof of Property 5.3. Let {r(1), . . . , r(n)} be a permutation of {1, . . . , n} such that Ar(i�1) P Ar(i) for i = 2, . . . , n and {q(1), . . . ,
q(n)} be a permutation of {1, . . . , n} such that Qr(i�1) P Qr(i) for i = 2, . . . , n.

Since (Q1, Q2, . . . , Qn) is a permutation of (A1, A2, . . . , An), we have r(i) = q(i), i = 1, . . . , n. Applying model P1, we can obtain
Ac ¼ Qc .

This completes Proof of Property 5.3. h
Proof of Property 5.4. Without loss of generality, we first suppose that for i < j, Ai < Aj and A0i < A0j.
When n = 1, it is obvious that Ac ¼ A1 ¼ A1 6 A01 ¼ A01 ¼ A0c .
When n = 2, using reduction to absurdity, we assume that A01 < A1 or A02 < A2. Here, we consider three cases:
Case 1: A01 < A1 and A02 P A2.
In this case, let ��A ¼ A1;A2

� �
, where A1 ¼ A01; A2 ¼ minðA02;A2Þ, we have that
# Ai \ Ac
� �

# Ai [ Ac
� � P CL for i ¼ 1;2
and
X2

i¼1

d Ai;Ai

� �
6

X2

i¼1

dðAi;AiÞ:
This contradicts the fact that ðA1; . . . ;AnÞ is the optimal adjusted opinion of (A1, A2, . . . , An).
Case 2: A01 P A1 and A02 < A2.
In this case, let A0 ¼ A01;A

0
2

� �
, where A01 ¼ max A01;A1

� �
; A02 ¼ A2, we have that
# A0i \ A0c
� �

# A0i [ A0c
� �P CL for i ¼ 1;2
and
X2

i¼1

d A0i;A
0
i

� �
6

X2

i¼1

d A0i;A
0
i

� �
:

This contradicts the fact that A01; . . . ;A0n
� �

is the optimal adjusted opinion of A01; . . . ;A0n
� 	

.
Case 3: A01 < A1 and A02 < A2.
In this case, A1 < A01 6 A01 < A1 and A02 < A2 6 A2 < A02. Thus, it cannot absolutely guarantee the value of

P2
i¼1d A0i;A

0
i

� �
is

smaller than
P2

i¼1d A0i;Ai

� �
, which contradicts the fact that A01; . . . ;A0n

� �
is the optimal adjusted opinion of A01;A

0
2; . . . ;A0n

� 	
.

Based on the three cases, we have A1 6 A01 and A2 6 A02. Consequently, Ac
6 A0c .

This completes Proof of Property 5.4. h
Proof of Property 5.5. Because of mini¼1;...;nðAiÞ 6mini¼1;...;n ðAiÞ and maxi¼1;...;n ðAiÞ 6 maxi¼1;...;nðAiÞ, then

min mini¼1;...;nðAiÞ
� �

6 min mini¼1;...;nðAiÞ
n o

and max maxi¼1;...;nðAiÞ
n o

6 max maxi¼1;...;nðAiÞ
� �

.

Therefore, # min mini¼1;...;nðAiÞ
n o

;max maxi¼1;...;nðAiÞ
n oh i

6 # min mini¼1;...;nðAiÞ
� �

;max maxi¼1;...;nðAiÞ
� �� �

.

This completes Proof of Property 5.5. h
Proof of Property 5.6. There are two cases:

(1) If A1 \ � � � \ An ¼£, then A1 \ � � � \ An # Ac.
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(2) If A1 \ � � � \ An – £, then using reduction to absurdity, we assume that A1 \ � � � \ An: � Ac , thus we can construct

another HFLTSs of S: ��A ¼ ðA1; . . . ;AnÞ and Ac , where Ai ¼ Aiði ¼ 1; . . . ;nÞ and Ac ¼ ðA1 \ � � � \ AnÞ [ Ac.

Then, we can find that
Xn

i¼1

d Ai;Ai

� �
¼
Xn

i¼1

dðAi;AiÞ;
and for i = 1, . . . , n,
# Ai \ Ac
� �

# Ai [ Ac
� � ¼ # Ai \ Ac

� �
# Ai [ Ac
� � > # Ai \ Ac

� �
# Ai [ Ac
� � ;
which contradicts the fact that Ac is the optimal solution to P1.
Therefore, A1 \ � � � \ An # Ac .
This completes Proof of Property 5.6. h
Proof of Lemma 5.1. (1) Sufficiency. For i – p, it satisfies
# Ai \ Ac
� �

# Ai [ Ac
� � ¼ # Ai \ Ac

� �
# Ai [ Ac
� �P CL:
For i = p, since Ac ¼ Ac , Ap � Ac
;# Ap

� �
¼ #ðApÞ and Ap � Ac , it satisfies
# Ap \ Ac
� �

# Ap [ Ac
� � ¼ # Ap

� �
# Ac
� � ¼ # Ap \ Ac

� �
# Ap [ Ac
� � P CL:

Furthermore;
Xn

i¼1

d Ai;Ai

� �
¼
Xn

i ¼ 1
i–p

dðAi;AiÞ þ d Ap;Ap

� �
;

since # Ap

� �
¼ #ðApÞ and Ap \ Ap ¼£, then
d Ap;Ap

� �
¼ # Ap [ Ap

� �
�# Ap \ Ap

� �
¼ #ðApÞ þ#ðApÞ ¼ dðAp;ApÞ;
Thus it satisfies
Pn

i¼1 d Ai;Ai

� �
¼
Pn

i¼1 dðAi;AiÞ.

Therefore, ��A ¼ A1; . . . ;An;A
c

� �
is the optimal solution to P1.

(2) Necessity. For i = p, Since Ac ¼ Ac ,
# Ap \ Ac
� �

# Ap [ Ac
� � ¼ # Ap \ Ac

� �
# Ap [ Ac
� � :
There are three cases between Ap and Ac:

1) If Ap \ Ac ¼£, then
# Ap\Ac
� 	

# Ap[Ac
� 	 ¼ 0. Therefore, ��A ¼ A1; . . . ;An;A

c
� �

is not an optimal solution to P1.

2) If Ap \ Ac – £ and Ap: � Ac , since Ap � Ac and Ap \ Ac ¼£, then
d Ap;Ap

� �
– dðAp;ApÞ:
As a result,
Pn

i¼1 d Ai;Ai

� �
–
Pn

i¼1 dðAi;AiÞ.

Therefore, ��A ¼ A1; . . . ;An;A
c

� �
is not an optimal solution to P1.

3) If Ap � Ac , then
# Ap \ Ac
� �

# Ap [ Ac
� � ¼ # Ap

� �
#ðAcÞ

:
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When # Ap

� �
¼ #ðApÞ; d Ap;Ap

� �
¼ dðAp;ApÞ, then it guarantees
Xn

i¼1

d Ai;Ai

� �
¼
Xn

i¼1

dðAi;AiÞ
and
# Ap \ Ac
� �

# Ap [ Ac
� � ¼ # Ap \ Ac

� �
# Ap [ Ac
� �P CL:
Therefore, if A ¼ A1; � � � ;An;A
c

� �
, where Ai ¼ Ai (i – p) and Ac ¼ Ac , is an optimal solution to P1, then Ap satisfies Ap � Ac

and # Ap

� �
¼ #ðApÞ.

This completes Proof of Lemma 5.1. h
Proof of Theorem 5.1. Based on Lemma 5.1, we prove the uniqueness of solution to model P2 as follows:

(1) For i – p; OAi ¼ Ai is the unique optimal solution to P2.
(2) For i = p, Ap can be further optimized to OAp by applying model P2 to minimize the Manhattan distance between Ap and

OAp.
minOAp
indðOAp

�Þ � ind A�p
� ���� ���þ indðOAp

þÞ � ind Aþp
� ���� ���� �

s:t:
indðOAp

�Þ; indðOAp
þÞ

h i
� indðAc�Þ; indðAcþÞ
h i

indðOAp
þÞ � indðOAp

�Þ ¼ #ðApÞ

8<
:

8>>>><
>>>>:

: ð55Þ
According to Lemma 5.2, the above mathematical programming (55) has a unique solution.
Therefore, OA ¼ ðOA1; . . . ;OAnÞ is the unique optimal solution to P2.

This completes Proof of Theorem 5.1. h
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